

Synchronization in the power grid with IEEE1588

Ing. Walter Bravo IP/MPLS Solution Manager Enterprise LATAM Walter.bravo@nokia.com

UTCAL/UTE Workshop September 2022

Synchronization requirement for mission critical applications

NOKIA

Sync options for **frequency** clock signal across the packet network

NOKIA

Sync options for time clock signal across the packet network

with Time of Day information are being replaced

Digital substations need time sync

Application	Time accuracy requirements	SNTP	GNSS/GPS & PTP		
Event stamping	10 ms		√		
Zero-crossing & synchrocheck	1 ms				
Digital fault recording	Better than 1 ms				
Line Differential Relays	10 µs to 20 µs				
Faul Location	1 μs to 3 μs		√		
Wide Are Protection	1 µs		√		
Synchrometrology (Synchrophasor)	Better than 1 µs		√		
Anti-islanding	Better than 1 µs				
Wide Area Power Oscillation Dumping	Better than 1 µs				
Communication Events					
IEC61850 GOOSE	100 µs to 1 ms				
MU/IEC61850 sampled values	1 µs				

<u>NIST report</u>: Timing Challenges in the Smart Grid <u>NASPI report</u>: Time Synchronization in the Electric Power System

GNSS vulnerabilities

Mechanical, Electronic

Environmental

Jamming

GNSS reliability

GNSS impacts by duration

Source: Strike3

Source. Strikes

IEEE 1588v2

1588 can be IP- or Ethernetbased

Peering relationship between grand master clock (MC) to slave clock (SC)

The peers exchange timestamp info and measure delay

Telecom profiles

1588 messages ூ Frequency Sync with 1588 (G.8265.1) 1588 GM Full on-path support model பி (FTS – G.8275.1) 1588 GM BC BC BC BC BC BC Time Sync \mathbb{A} Partial on-path support model ா <u>~</u> 2 $\overline{\ }$ $\overline{\ }$ ~ 2 <u>``\</u> ォヽ 7 \nearrow \nearrow \nearrow (PTS – G.8275.2) 1588 GM BC

	Profile	Standards encap type	Freq recovery	Time recovery
_	1588 default (2008)	IP or Ethernet	Yes	Yes
	G.8265.1 (2010)	IP	Yes	No
	G.8275.1 (2014)	Eth	No	Yes
	G.8275.2 (2016)	IP	Yes	Yes

 \bigcirc

@

Power profiles

10 © 2022 Nokia

NOKIA

7705 as GM and BC for power profile network Support for both IEC/IEEE 61850-9-3 and C37.238-2017

Inter-site sync distribution with profile interworking Extend existing G.8275.1 PTP network to interwork with power profile

7705 supports interworking of PTP from G.8275.1 to IEC/IEEE 61850-9-3 and C37.238-2017

Attaining service assurance in a multi-domain network

Taking advantage of the capability of multi-level Ethernet OAM

ITU-T Y.1731 – Ethernet OAM standard (ex, 1-way delay) OAM – operations, administration & maintenance

Network redundancy & BMCA are key

Network redundancy protection

• Dual-homing/ ring architecture

Network redundancy & BMCA are key

Network redundancy protection

• Dual-homing/ ring architecture

Network redundancy & BMCA are key

Network redundancy protection

- Dual-homing/ ring architecture
- Redundant link

Network redundancy & BMCA are key

Network redundancy protection

- Dual-homing/ ring architecture
- Redundant link

Network redundancy & BMCA are key

No impact on sync flows

Network redundancy protection

- Dual-homing/ ring architecture
- Redundant link

Nodal redundancy protection

Control card
protection

NOKIA

Network redundancy & BMCA are key

Network redundancy protection

- Dual-homing/ ring architecture
- Redundant link

Nodal redundancy protection

• Control card protection

Primacy clock reference redundancy protection

- GPS signal integrity
- GM clock

Network redundancy & BMCA are key

Network redundancy protection

- Dual-homing/ ring architecture
- Redundant link

Nodal redundancy protection

• Control card protection

Primacy clock reference redundancy protection

- GPS signal integrity
- GM clock

A novel approach is needed

NSP managing the sync network as a network

Sy Sy	nchronization Mana	.ger (2)						4 🛛 🛛
IEEE	1588 PTP Peer (Prec	ision Timing Protoco	l) 🔻 No	Filter	- 7 2	Span On: 📃		Last Carryle
L.	Peer ld ∇ (1)	Peer Site ID	Peer Description	Router	Sync-E Enabled	Count: 177 P Peer Remote Site ID	eer Clock Type	2016/07/19 19:35:00
1		38.120.169.60	N/A	Base(1)	▼ ▼	35.121.10.63	Ordinary	\$ Create ►
		10.1.182.223 38.120.169.60 38.120.169.60	N/A N/A	Base(1) Base(1) Base(1)		10.1.182.224 0.0.0.0 0.0.0.0	Ordinary, Slave 2010 Ordinary Ordinary	Properties
1		38.120.168.102 38.120.169.213	N/A N/A	Base(1) Base(1)		38.120.168.101 0.0.0.0	Ordinary, Slave Ordinary, Slave	Copy to Clipboard
		38.120.169.63 38.120.168.65 35.250.64.160	N/A N/A	Base(1) Base(1) Base(1)		38.120.168.65 38.120.169.63 35.250.64.178	Boundary Ordinary, Slave	Navigate 🕨
		55.250.04.100	11/2	DUSCLEY		55.250.04.170	Diamary D	O Sync Timing Topology View

Sync management with NSP

1588 topology and flow in display

Session Recap

1. Clock Synchronization Requirements for DSS is essential for the successful operation of a DSS

- Both Frequency and Time
- Performance needed by end devices
- Network topology
- Existing equipment limitations

2. There is a wide range of Clock synchronization techniques; SyncE,1 PPS, IRIG, and PTP,....

- To meet the high accuracy requirements for an IEC 61850-based DSS, PTP is the best method for time synchronization.
- Use IEEE1588v2 for time and/or frequency with the appropriate profile
- Must match with profile supported by end devices
- Make sure performance budget across the network can be met based on each clock's specifications

3. A robust and engineered network is critical for reliable Clock Synchronization in DSS.

